ИЦМ НиТМЧ и Дни Чугуна в Челнах

Исследовательский центр Модификатор

Модифицирование сплавов: разработка, внедрение, технический аудит
Металловедение. Металлургия. Литейное производство

[ на главную ] [ конференция ] [ выставки ] [ предприятия ] [ литература ] [ вопрос-ответ ] [ экология ] [ контакты ]
    МНТК Дни чугуна в Челнах 2024 планируется в октябре »

Предел прочности

Предел прочности - это то же, что и временное сопротивление материала. Но несмотря на то, что правильнее использовать термин временное сопротивление, понятие предел прочности лучше прижилось в технической разговорной речи. В то же время в нормативной документации, стандартах применяют термин "временное сопротивление".

©ИЦМ(www.modificator.ru)

Прочность - это сопротивление материала деформации и разрушению, одно из основных механических свойств. Другими словами, прочность - это свойство материалов, не разрушаясь, воспринимать те или иные воздействия (нагрузки, температурные, магнитные и другие поля).

К характеристикам прочности при растяжении относятся модуль нормальной упругости, предел пропорциональности, предел упругости, предел текучести и временное сопротивление (предел прочности).

Предел прочности - это максимальное механическое напряжение, выше которого происходит разрушение материала, подвергаемого деформации; предел прочности при растяжении обозначается σВ и измеряется в килограммах силы на квадратный сантиметр (кгс/см2), а также указывается в мегапаскалях (МПа).

Различают: Испытания предела прочности при изгибе Прочность при изгибе - образцы Испытания предела прочности при растяжении

  • предел прочности при растяжении,
  • предел прочности при сжатии,
  • предел прочности при изгибе,
  • предел прочности при кручении.

Предел кратковременной прочности (МПа) определяется с помощью испытаний на растяжение, деформацию проводят до разрушения. С помощью испытаний на растяжение определяют временное сопротивление, удлинение, предел упругости и др.. Испытания на длительную прочность предназначены главным образом для оценки возможности использования материалов при высоких температурах (длительная прочность, ползучесть); в результате определяется σB/Zeit - предел ограниченной длительной прочности на заданный срок службы. [1]

©ИЦМ(www.modificator.ru)

Прочность металлов

Физику прочности основал Галилей: обобщая свои опыты, он открыл (1638 г.), что при растяжении или сжатии нагрузка разрушения P для данного материала зависит только от площади поперечного сечения F. Так появилась новая физическая величина - напряжение σ=P/F - и физическая постоянная материала: напряжение разрушения [4].

Физика разрушения как фундаментальная наука о прочности металлов возникла в конце 40-х годов XX века [5]; это было продиктовано острой необходимостью разработки научно обоснованных мер для предотвращения участившихся катастрофических разрушений машин и сооружений. Раньше в области прочности и разрушения изделий учитывалась только классическая механика, основанная на постулатах однородного упруго-пластического твёрдого тела, без учёта внутренней структуры металла. Физика разрушения учитывает также атомно-кристаллическое строение решётки металлов, наличие дефектов металлической решётки и законы взаимодействия этих дефектов с элементами внутренней структуры металла: границами зёрен, второй фазой, неметаллическими включениями и др.

Большое влияние на прочность материала оказывает наличие ПАВ в окружающей среде, способных сильно адсорбироваться (влага, примеси); происходит уменьшение предела прочности.

К повышению прочности металла приводят целенаправленние изменения металлической структуры, в том числе - модифицирование сплава.

Учебный фильм о прочности металлов (СССР, год выпуска: ~1980):

Предел прочности металла

Предел прочности меди. При комнатной температуре предел прочности отожжённой технической меди σВ=23 кгс/мм2 [8]. С ростом температуры испытания предел прочности меди уменьшается. Легирующие элементы и примеси различным образом влияют на предел прочности меди, как увеличивая, так и уменьшая его.

Предел прочности алюминия. Отожжённый алюминий технической чистоты при комнатной температуре имеет предел прочности σВ=8 кгс/мм2 [8]. С повышением чистоты прочность алюминия уменьшается, а пластичность увеличивается. Например, литой в землю алюминий чистотой 99,996% имеет предел прочности 5 кгс/мм2. Предел прочности алюминия уменьшается естественным образом при повышении температуры испытания. При понижении температуры от +27 до -269°C временное сопротивление алюминия повышается - в 4 раза у технического алюминия и в 7 раз у высокочистого алюминия. Легирование повышает прочность алюминия.

©ИЦМ(www.modificator.ru)

Предел прочности сталей

В качестве примера представлены значения предела прочности некоторых сталей. Эти значения взяты из государственных стандартов и являются рекомендуемыми (требуемыми). Реальные значения предела прочности сталей, равно как и чугунов, а также других металлических сплавов зависят от множества факторов и должны определяться при необходимости в каждом конкретном случае.

Для стальных отливок, изготовленных из нелегированных конструкционных сталей, предусмотренных стандартом (стальное литьё, ГОСТ 977-88), предел прочности стали при растяжении составляет примерно 40-60 кг/мм2 или 392-569 МПа (нормализация или нормализация с отпуском), категория прочности К20-К30. Для тех же сталей после закалки и отпуска регламентируемые категории прочности КТ30-КТ40, значения временного сопротивления уже не менее 491-736 МПа.

Для конструкционных углеродистых качественных сталей (ГОСТ 1050-88, прокат размером до 80 мм, после нормализации):

  • Предел прочности стали 10: сталь 10 имеет предел кратковременной прочности 330 МПа.
  • Предел прочности стали 20: сталь 20 имеет предел кратковременной прочности 410 МПа.
  • Предел прочности стали 45: сталь 45 имеет предел кратковременной прочности 600 МПа.

Категории прочности сталей

Категории прочности сталей (ГОСТ 977-88) условно обозначаются индексами «К» и «КТ», после индекса следует число, которое представляет собой значение требуемого предела текучести. Индекс «К» присваивается сталям в отожженном, нормализованном или отпущенном состоянии. Индекс «КТ» присваивается сталям после закалки и отпуска.

Предел прочности чугуна

Метод определения предела прочности чугуна регламентируется стандартом ГОСТ 27208-87 (Отливки из чугуна. Испытания на растяжение, определение временного сопротивления).

Предел прочности серого чугуна. Серый чугун (ГОСТ 1412-85) маркируется буквами СЧ, после букв следуют цифры, которые указывают минимальную величину предела прочности чугуна - временного сопротивления при растяжении (МПа*10-1). ГОСТ 1412-85 распространяется на чугуны с пластинчатым графитом для отливок марок СЧ10-СЧ35; отсюда видно, минимальные значения предела прочности серого чугуна при растяжении в литом состоянии или после термической обработки варьируются от 10 до 35 кгс/мм2 (или от 100 до 350 МПа). Превышение минимального значения предела прочности серого чугуна допускается не более, чем на 100 МПа, если иное не оговорено отдельно.

Предел прочности высокопрочного чугуна. Маркировка высокопрочного чугуна также включает в себя цифры, обозначающие временное сопротивление при растяжении чугуна (предел прочности), ГОСТ 7293-85. Предел прочности при растяжении высокопрочного чугуна составляет 35-100 кг/мм2 (или от 350 до 1000 МПа).

Из вышеизложенного видно, что чугун с шаровидным графитом может успешно конкурировать со сталью.

Подготовлено: Корниенко А.Э. (ИЦМ)

Лит.:

  1. Циммерман Р., Гюнтер К. Металлургия и материаловедение. Справ. изд. Пер. с нем. – М.: Металлургия, 1982. – 480 с.
  2. Иванов В.Н. Словарь-справочник по литейному производству. – М.: Машиностроение, 1990. – 384 с.: ил. - ISBN 5-217-00241-1
  3. Жуковец И.И. Механические испытания металлов: Учеб. для сред. ПТУ. - 2-е изд., перераб. и доп. – М.: Высш.шк., 1986. - 199 с.: ил. - (Профтехобразование). - ББК 34.2/ Ж 86/ УДЖ 620.1
  4. Штремель М.А. Прочность сплавов. Часть II. Деформация: Учебник для вузов. - М.:*МИСИС*, 1997. - 527 с.
  5. Мешков Ю.Я. Физика разрушения стали и актуальные вопросы конструкционной прочности // Структура реальных металлов: Сб. науч. тр. - Киев: Наук. думка, 1988. - С.235-254.
  6. Френкель Я.И. Введение в теорию металлов. Издание четвёртое. - Л.: "Наука", Ленингр. отд., 1972. 424 с.
  7. Получение и свойства чугуна с шаровидным графитом. Под редакцией Гиршовича Н.Г. - М.,Л.: Ленинградское отделение Машгиза, 1962, - 351 с.
  8. Бобылев А.В. Механические и технологические свойства металлов. Справочник. - М.: Металлургия, 1980. 296 с.





[на главную] | [новости] | [конференция] | [книги] | [статьи] | [патенты] | [вопрос-ответ] | [экология] | [персоны] | [предприятия] | [выставки] | [справочник] | [ссылки] | [реклама] | [галерея] | [форум] | [контакты]


Графит. ИЦМ

Алмаз. ИЦМ

Фуллерен. ИЦМ


Консультации по литейному производству


Наши контакты: mod2004@rambler.ru тел.: +7 917 270 30 43

Locations of visitors to this page 2007-2020 © "Исследовательский центр Модификатор" www.modificator.ru  
При использовании материалов сайта, активная ссылка на источник обязательна.